

Environmental Product Declaration

In accordance with ISO 14025 for

MAPEPLAN T M – MAPEPLAN T B MAPEPLAN T Af – MAPEPLAN T I

(TPO/FPO Waterproofing Membranes)

POLYGLASS SpA

Programme:	The International EPD [®] System; www.environdec.com
Programme operator:	EPD International AB
EPD registration number:	S-P-00906
Approval date:	2016-06-28
Valid until:	2021-06-28
Revision number:	04
Geographical scope:	International

1. Company description / Goal & Scope

The Company's headquarter is located in Ponte di Piave, Treviso (Italy). Over 90.000 m^2 of surface, 25.000 m^2 covered, 4 production lines of polymer-bitumen membranes, one production line of thermal and acoustic insulation systems and two production lines of synthetic PVC-P and TPO/FPO membranes.

In October 2008 Polyglass was taken over by the MAPEI Group, an international Company in the chemical industry for construction, with 67 production plants in 5 continents, in 32 countries.

Polyglass SpA is ISO 14001 certified since 2010 and ISO 9001 since 1995.

The goal of the study has been to provide necessary data and documentation to produce an EPD according to the requirements of PCR according to EN 15804:2014 and PCR Environdec, version 2.01, and to have more comprehension about the environmental impacts related to Mapeplan T M, Mapeplan T B, Mapeplan T Af, Mapeplan T I, manufactured in Polyglass SpA located in Ponte di Piave (TV - Italy), including packaging of the finished products.

Target audiences of the study are customers and other parties with an interest in the environmental impacts of **MAPEPLAN T M, MAPEPLAN T B, MAPEPLAN T Af, MAPEPLAN T I.**

Figura 1: Production equipment

This analysis shall not support comparative assertions intended to be disclosed to the public.

Figura 2: Polyglass S.p.A. head quarter

2. Product description

<u>Mapeplan T M</u>, <u>Mapeplan T M</u> (Broof t1) are synthetic roofing waterproofing membranes in flexible polyolefin TPO/FPO produced in one multi-extrusion coating process, with high quality raw materials, reinforced with polyester net.

<u>Mapeplan T B</u>, <u>Mapeplan T I</u> are synthetic roofing waterproofing membranes in flexible polyolefin TPO/FPO produced in one multi-extrusion coating process, with high quality raw materials, reinforced with glass mat.

<u>Mapeplan T Af</u>, <u>Mapeplan T Af</u> (Broof t1) are synthetic roofing waterproofing membranes in flexible polyolefin TPO/FPO produced in one multi-extrusion coating process, with high quality raw materials, reinforced with glass mat and have also a fleece backed with a woven-non-woven polyester. Both membranes use an adhesive (PUR based) for their installation.

The reference service life of the roofing membrane, according to Polyglass experience, is estimated at least 30 years, if professionally installed and properly used.

All Mapeplan T membranes are compliant with EN 13956 ("Flexible sheets for waterproofing. Plastic and rubber sheets for roof waterproofing. Definitions and characteristics"), and are sold with different packaging, as follow:

PACKAGING

PALLET	14 rolls per pallet					
LENGTH OF ROLLS	25 m 20 m 15 m (according to the thickness)					
WIDTH OF ROLLS	2,10 m 1,60 m 1,05 m					

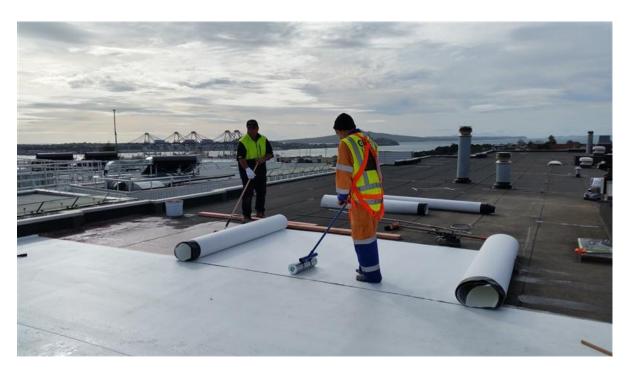


Figure 3: Membrane MAPEPLAN T Af on fully exposed roof

3.Content declaration

The main components and ancillary materials of Mapeplan T polymeric waterproofing membranes are the following:

Table 1: Composition

Materials	Percentage (%)
TPO/FPO Compound	50-95
Pigments	0-5
Reinforcing material	5-15
Other additives	0-1

The formulations contain no hazardous substances. These products contain no substances of very high concern (SVHC) on the REACH Candidate List/ published by the European Chemicals Agency in a concentration more than 0,1 % (by unit weight).

4. Declared Unit and Reference Service Life:

The declared unit is 1m² of packaged finished product having a 1,5 mm thickness.

Packaging materials include:

- Wooden pallet
- Cardboard
- LDPE used as wrapping material

The reference service life of the roofing membrane, according to Polyglass experience, is estimated at least 30 years, if professionally installed and properly used.

5.System Boundaries & additional technical information:

The approach is a "cradle to gate" with option.

The following modules have been considered:

- A1-A3 (production stage): extraction and transport of raw materials, packaging included, production process

- A4-A5 (Construction process stage): transport of the finished product to final customers and installation into the building

- C1-C4 (End-of-life stage): de-construction, demolition (C1), transport to waste processing (C2), waste processing for reuse, recovery and/or recycling (C3), disposal (C4)

Product stage			Assei sta			Use stage						En	d of li	fe sta្	<u>je</u>	
Upstr	eam	core				Downstream										
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
х	х	х	Х	х	MND	MND	MND	MND	MND	MND	MND	Х	х	Х	х	MND

Table 2: System boundaries (X=included, MND= module not declared)

A brief description of production process, is the following:

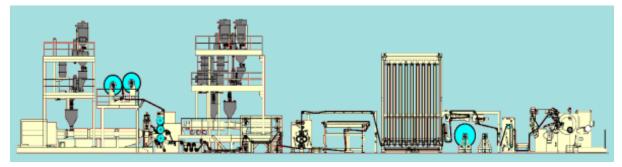


Figure 4: Production process detail

The production process of TPO/FPO roofing membranes is a multi-extrusion coating process. The production plant produces roofing membranes with an internal reinforcing material made of glass mat or polyester net, also a fleece backed with a woven-non-woven polyester.

TPO/FPO granulate is stored in silos and sent to multi-extrusion plant.

The hot melt compound comes out from the extruders where the reinforced material is combined and totally encapsulated.

The membrane is cooled and finally sent to the packaging area, ready to ship.

Table 3: Transport to the building site (A4) (referred to 1Kg of finished product)

Name	Value	Unit						
Means of transport : truck euro 3 with 27 tons of payload & ship with a 27500 DWT								
Litres of fuel (truck)	1,79E-03	l/100km						
Litres of fuel (ship)	4,44E-04	l/100km						
Transport distance	1800	km						
Capacity utilisation (including empty runs)	85	%						
Gross density of products transported	~1200	kg/m ³						
Capacity utilisation volume factor	100	%						

 Table 4: Installation into the building (A5) (referred to 1m² of finished product)

Name	Value	Unit
Auxiliary	0,350*	kg
Water consumption	-	m ³
Other resources	-	kg
Electricity consumption	0,019	kWh/m ²
Other energy carriers	-	MJ
Material loss (membrane)	3	%
Overlaps (membrane)	5,5	%
Output substances following waste treatment on site	-	kg
Dust in the air	-	kg
VOC in the air	-	kg

*: only for Mapeplan T Af & T Af Broof t1

Table 5: End of Life (C1-C4) (referred to 1m² of finished product)

Name	Value	Unit
Collected separately	-	kg
Collected as mixed construction waste	-	kg
Reuse	-	kg
Transport to recycling /disposal facility	100	km
Energy recovery	-	kg
Landfilling	0,75 – 1,27**	kg

**: according to different Mapeplan

6.Cut-off rules & allocation

Criteria for the exclusion of inputs and outputs (cut-off rules) in the LCA and information modules and any additional information are intended to support an efficient calculation procedure. They are not applied in order to hide data.

The following procedure is followed for the exclusion of inputs and outputs:

- All inputs and outputs to a unit process are included in the calculation, for which data are available.
- Less than 1 % of the total mass inputs / outputs of the unit process A1 and A3, are cut off (see table 6).

EPD®

Input flows are covered for over 99% of the formula.

Table 6: Cut-off criteria

Process excluded from study	Cut-off criteria	Quantified contribution from process
A 3. production (all yillary materials)	less than 10 ⁻⁵ Kg / Kg of finished product	less than 10 ⁻⁵ Kg / Kg of finished product
	Less than 10 ⁻⁴ Kg / Kg of finished product	Less than 10 ⁻⁴ Kg / Kg of finished product

For the allocation procedure and principles, consider following table (Table 7):

Module	Allocation Principle
A1; A2	All data are referred to 1m ² of product
	A1: electricity is allocated to the reference line production
A3; A4	All data are referred to 1m ² of packaged product
	• A3-production: F-gas are taken into consideration and they are allocated for all production volumes from 2009 (first charge of refrigerating system) until 2015 (reference year of the present study).
	A3-wastes: all data are allocated to the whole plant production
A5; C1; C2; C3, C4	All data are referred to 1m ² of packaged product
	• A5: all wastes coming from packaging material are considered to be disposed in a landfill (100%)
	 C3 - C4: according to "European Commission DG ENV Final Report Task 2 – Management of C&D waste", 46% is to be considered as recycle/reuse and remaining percentage is to be considered as disposed in a landfill
	NOTE: No benefits coming from recycling waste treatment process have been considered in this study

Table 7: Allocation procedure and principles

7. Environmental performance & interpretation

Following tables show environmental impacts & indicators for the products considered according to CML methodology (2010 - Apr2013, version 4.2).

System boundary	Modules	GWP ₁₀₀ (Kg CO2 eq.)	ADPe (element) (Kg Sb eq.)	EP (Kg (PO ₄) ³⁻ eq.)	AP (Kg SO2 eq.)	POCP (Kg ethylene eq.)	ODP (Kg R-11 eq.)	ADPf (fossil) (MJ)
Upstream + core	A1-A3	4,12E+00	8,42E-07	1,40E-03	1,78E-02	3,59E-03	4,97E-08	1,17E+02
	A4	1,22E-01	4,60E-09	1,61E-04	8,64E-04	-1,39E-04	4,94E-13	1,65E+00
E	A5	1,07E-01	3,00E-09	3,12E-05	7,98E-05	3,74E-05	6,99E-12	2,06E-01
trear	C1	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Downstream	C2	1,28E-02	4,99E-10	1,36E-05	5,38E-05	-1,76E-05	5,23E-14	1,75E-01
۵	C3	2,06E-03	3,46E-09	3,57E-06	1,43E-05	2,04E-06	3,14E-14	3,82E-02
	C4	1,44E-02	5,38E-09	1,21E-05	8,79E-05	8,24E-06	2,31E-13	1,89E-01

Table 8: Mapeplan T M Environmental categories

GWP100: Global Warming Potential; **ADPe**: Abiotic Depletion Potential (elements); **EP**: Eutrophication Potential; **AP**: Acidification Potential; **POCP**: Photochemical Ozone Creation Potential; **ODP**: Ozone Depletion Potential; **ADPf**: Abiotic Depletion Potential (fossil)

Table 9: Mapeplan T M other environmental indicators

System bou	Indary	Ustream + core	Downstream					
Parameter	Unit	A1-A3	A4 A5 0		C1	C2	С3	C4
RPEE	MJ	4,86E+00	8,41E-02	3,99E-02	0,00E+00	9,81E-03	2,76E-03	1,94E-02
RPEM	MJ	-	-	-	-	-	-	-
TPE	MJ	4,86E+00	8,41E-02	3,99E-02	0,00E+00	9,81E-03	2,76E-03	1,94E-02
NRPE	MJ	1,28E+02	1,66E+00	2,71E-01	0,00E+00	1,76E-01	3,93E-02	1,97E-01
NRPM	MJ	-	-	-	-	-	-	-
TRPE	MJ	1,28E+02	1,66E+00	2,71E-01	0,00E+00	1,76E-01	3,93E-02	1,97E-01
SM	kg	2,69E-02	-	-	-	-	-	-
RSF	MJ	-	-	-	-	-	-	-
NRSF	MJ	-	-	-	-	-	-	-
W	m³	7,45E-03	2,89E-03	1,48E-04	0,00E+00	3,39E-04	5,18E-05	1,52E-04

Table 10: Mapeplan T M waste production & other output flows

System boundary			Downstream						
Unit	A1-A3	A4	A5	C1	C2	С3	C4		
Kg	4,19E-04	-	-	-	-	-	-		
Kg	1,12E-02	-	-	-	-	-	-		
Kg	0,00E+00	-	-	-	-	-	-		
Kg	-	-	-	-	-	-	-		
Kg	-	-	-	-	-	7,63E-01	-		
Kg	-	-	-	-	-	-	-		
MJ	-	-	-	-	-	-	-		
	Kg Kg Kg Kg Kg	Kg 4,19E-04 Kg 1,12E-02 Kg 0,00E+00 Kg - Kg - Kg - Kg -	+ core Unit A1-A3 A4 Kg 4,19E-04 - Kg 1,12E-02 - Kg 0,00E+00 - Kg - -	+ core Unit A1-A3 A4 A5 Kg 4,19E-04 - - Kg 1,12E-02 - - Kg 0,00E+00 - - Kg 0.700E+00 - - Kg 0.700E+00 - - Kg - - - Kg - - - Kg - - - Kg - - -	+ core Down Unit A1-A3 A4 A5 C1 Kg 4,19E-04 - - - Kg 1,12E-02 - - - Kg 0,00E+00 - - - Kg 0.00E+00 - - - Kg 0.00E+00 - - - Kg - - - -	+ core Downstream Unit A1-A3 A4 A5 C1 C2 Kg 4,19E-04 - - - - Kg 1,12E-02 - - - - Kg 0,00E+00 - - - - Kg - - - - - Kg - - - - - Kg - - - - -	+ core Downstream Unit A1-A3 A4 A5 C1 C2 C3 Kg 4,19E-04 Kg 1,12E-02 Kg 0,00E+00 Kg 0.00E+00 Kg 0.00E+00 Kg 0.00E+00 Kg 0.00E+00 Kg Kg Kg		

HW Hazardous waste disposed; NHW Non Hazardous waste disposed; RW Radioactive waste disposed

Table 11: Mapeplan T M Broof t1 Environmental categories

System boundary	Modules	GWP ₁₀₀ (Kg CO2 eq.)	ADPe (element) (Kg Sb eq.)	EP (Kg (PO₄) ³⁻ eq.)	AP (Kg SO2 eq.)	POCP (Kg ethylene eq.)	ODP (Kg R-11 eq.)	ADPf (fossil) (MJ)
Upstream + core	A1-A3	3,98E+00	8,74E-07	1,23E-03	1,61E-02	2,92E-03	5,48E-08	9,80E+01
	A4	1,33E-01	5,01E-09	1,76E-04	9,42E-04	-1,52E-04	5,38E-13	1,80E+00
ε	A5	1,07E-01	3,00E-09	3,12E-05	7,98E-05	3,74E-05	6,98E-12	2,06E-01
Downstream	C1	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
sum	C2	1,41E-02	5,47E-10	1,49E-05	5,89E-05	-1,93E-05	5,73E-14	1,92E-01
Õ	C3	2,26E-03	3,78E-09	3,91E-06	1,57E-05	2,23E-06	3,44E-14	4,19E-02
	C4	1,57E-02	5,89E-09	1,32E-05	9,62E-05	9,03E-06	2,54E-13	2,07E-01

GWP100: Global Warming Potential; **ADPe**: Abiotic Depletion Potential (elements); **EP**: Eutrophication Potential; **AP**: Acidification Potential; **POCP**: Photochemical Ozone Creation Potential; **ODP**: Ozone Depletion Potential; **ADPf**: Abiotic Depletion Potential (fossil)

System bou	Indary	Ustream + core	Downstream					
Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4
RPEE	MJ	4,98E+00	9,16E-02	3,99E-02	0,00E+00	1,07E-02	3,02E-03	2,12E-02
RPEM	MJ	-	-	-	-	-	-	-
TPE	MJ	4,98E+00	9,16E-02	3,99E-02	0,00E+00	1,07E-02	3,02E-03	2,12E-02
NRPE	MJ	1,07E+02	1,80E+00	2,71E-01	0,00E+00	1,93E-01	4,31E-02	2,16E-01
NRPM	MJ	-	-	-	-	-	-	-
TRPE	MJ	1,07E+02	1,80E+00	2,71E-01	0,00E+00	1,93E-01	4,31E-02	2,16E-01
SM	kg	1,86E-02	-	-	-	-	-	-
RSF	MJ	-	-	-	-	-	-	-
NRSF	MJ	-	-	-	-	-	-	-
W	m³	9,41E-03	3,15E-03	1,48E-04	0,00E+00	3,71E-04	5,68E-05	1,66E-04

Table 12: Mapeplan T M Broof t1 other environmental indicators

Table 13: Mapeplan T M Broof t1 waste production & other output flows

System boundary	Ustream + core	Downstream						
Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4
NHW	Kg	4,19E-04	-	-	-	-	-	-
HW	Kg	1,12E-02	-	-	-	-	-	-
RW	Kg	0,00E+00	-	-	-	-	-	-
Components for re-use	Kg	-	-	-	-	-	-	-
Materials for recycling	Kg	-	-	-	-	-	8,40E-01	-
Materials for energy recovery	Kg	-	-	-	-	-	-	-
Exported energy	MJ	-	-	-	-	-	-	-

HW Hazardous waste disposed; NHW Non Hazardous waste disposed; RW Radioactive waste disposed

Table 14: Mapeplan T B Environmental categories

System boundary	Modules	GWP ₁₀₀ (Kg CO2 eq.)	ADPe (element) (Kg Sb eq.)	EP (Kg (PO ₄) ³⁻ eq.)	AP (Kg SO2 eq.)	POCP (Kg ethylene eq.)	ODP (Kg R-11 eq.)	ADPf (fossil) (MJ)
Upstream + core	A1-A3	3,95E+00	4,61E-06	1,40E-03	1,75E-02	3,34E-03	4,97E-08	1,13E+02
	A4	1,20E-01	4,52E-09	1,58E-04	8,49E-04	-1,37E-04	4,86E-13	1,62E+00
c	A5	1,07E-01	3,00E-09	3,12E-05	7,98E-05	3,74E-05	6,99E-12	2,06E-01
trean	C1	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Downstream	C2	1,26E-02	4,90E-10	1,34E-05	5,28E-05	-1,73E-05	5,13E-14	1,72E-01
Δ	C3	2,03E-03	3,39E-09	3,50E-06	1,40E-05	2,00E-06	3,08E-14	3,75E-02
	C4	1,41E-02	5,28E-09	1,18E-05	8,63E-05	8,09E-06	2,27E-13	1,86E-01

GWP100: Global Warming Potential; **ADPe**: Abiotic Depletion Potential (elements); **EP**: Eutrophication Potential; **AP**: Acidification Potential; **POCP**: Photochemical Ozone Creation Potential; **ODP**: Ozone Depletion Potential; **ADPf**: Abiotic Depletion Potential (fossil)

System bou	Indary	Ustream + core	Downstream						
Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4	
RPEE	MJ	4,65E+00	8,27E-02	3,99E-02	0,00E+00	9,64E-03	2,71E-03	1,90E-02	
RPEM	MJ	-	-	-	-	-	-	-	
TPE	MJ	4,65E+00	8,27E-02	3,99E-02	0,00E+00	9,64E-03	2,71E-03	1,90E-02	
NRPE	MJ	1,23E+02	1,63E+00	2,71E-01	0,00E+00	1,73E-01	3,86E-02	1,93E-01	
NRPM	MJ	-	-	-	-	-	-	-	
TRPE	MJ	1,23E+02	1,63E+00	2,71E-01	0,00E+00	1,73E-01	3,86E-02	1,93E-01	
SM	kg	1,85E-02	-	-	-	-	-	-	
RSF	MJ	-	-	-	-	-	-	-	
NRSF	MJ	-	-	-	-	-	-	-	
W	m³	6,44E-03	2,84E-03	1,48E-04	0,00E+00	3,33E-04	5,09E-05	1,49E-04	

Table 15: Mapeplan T B other environmental indicators

System boundary	Ustream + core	Downstream						
Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4
NHW	Kg	4,19E-04	-	-	-	-	-	-
HW	Kg	1,12E-02	-	-	-	-	-	-
RW	Kg	0,00E+00	-	-	-	-	-	-
Components for re-use	Kg	-	-	-	-	-	-	-
Materials for recycling	Kg	-	-	-	-	-	7,50E-01	-
Materials for energy recovery	Kg	-	-	-	-	-	-	-
Exported energy	Exported energy MJ			-	-	-	-	-

Table 16: Mapeplan T B waste production & other output flows

HW Hazardous waste disposed; NHW Non Hazardous waste disposed; RW Radioactive waste disposed

Table 17: Mapeplan T Af Environmental categories

System boundary	Modules	GWP ₁₀₀ (Kg CO2 eq.)	ADPe (element) (Kg Sb eq.)	EP (Kg (PO₄) ³⁻ eq.)	AP (Kg SO2 eq.)	POCP (Kg ethylene eq.)	ODP (Kg R-11 eq.)	ADPf (fossil) (MJ)
Upstream + core	A1-A3	7,84E+00	1,19E-05	2,51E-03	2,92E-02	5,68E-03	6,95E-08	2,03E+02
	A4	1,65E-01	6,23E-09	2,18E-04	1,17E-03	-1,88E-04	6,69E-13	2,23E+00
ε	A5	1,53E-01	3,89E-09	3,88E-05	9,95E-05	5,35E-05	7,19E-12	2,73E-01
nstream	C1	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Downs	C2	2,01E-02	7,80E-10	2,13E-05	8,41E-05	-2,75E-05	8,17E-14	2,74E-01
ă	C3	3,22E-03	5,40E-09	5,58E-06	2,24E-05	3,18E-06	4,91E-14	5,97E-02
	C4	2,25E-02	8,41E-09	1,88E-05	1,37E-04	1,29E-05	3,62E-13	2,95E-01

GWP100: Global Warming Potential; **ADPe**: Abiotic Depletion Potential (elements); **EP**: Eutrophication Potential; **AP**: Acidification Potential; **POCP**: Photochemical Ozone Creation Potential; **ODP**: Ozone Depletion Potential; **ADPf**: Abiotic Depletion Potential (fossil)

Table 18: Mapeplan T Af other environmental indicators

System bou	Indary	Ustream + core	Downstream					
Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4
RPEE	MJ	9,05E+00	1,14E-01	4,39E-02	0,00E+00	1,53E-02	4,32E-03	3,03E-02
RPEM	MJ	-	-	-	-	-	-	-
TPE	MJ	9,05E+00	1,14E-01	4,39E-02	0,00E+00	1,53E-02	4,32E-03	3,03E-02
NRPE	MJ	2,18E+02	2,24E+00	3,41E-01	0,00E+00	2,75E-01	6,15E-02	3,08E-01
NRPM	MJ	-	-	-	-	-	-	-
TRPE	MJ	2,18E+02	2,24E+00	3,41E-01	0,00E+00	2,75E-01	6,15E-02	3,08E-01
SM	kg	1,86E-02	-	-	-	-	-	-
RSF	MJ	-	-	-	-	-	-	-
NRSF	MJ	-	-	-	-	-	-	-
W	m³	1,60E-02	3,92E-03	1,78E-04	0,00E+00	5,29E-04	8,10E-05	2,37E-04

Table 19: Mapeplan T Af waste production & other output flows

System boundary	System boundary				Downs	stream		
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
NHW	Kg	4,19E-04	-	-	-	-	-	-
HW	Kg	1,12E-02	-	-	-	-	-	-
RW	Kg	0,00E+00	-	-	-	-	-	-
Components for re-use	Kg	-	-	-	-	-	-	-
Materials for recycling	Kg	-	-	-	-	-	1,20E00	-
Materials for energy recovery	Kg	-	-	-	-	-	-	-
Exported energy	-	-	-	-	-	-	-	
HW Hazardous waste disposed; NI	IW Non	Hazardous w	aste dis	oosed; R	W Radio	active w	aste dispo	sed

Table 20: Mapeplan T Af Broof t1 Environmental categories

System boundary	Modules	GWP ₁₀₀ (Kg CO2 eq.)	ADPe (element) (Kg Sb eq.)	EP (Kg (PO4) ³⁻ eq.)	AP (Kg SO2 eq.)	POCP (Kg ethylene eq.)	ODP (Kg R-11 eq.)	ADPf (fossil) (MJ)
Upstream + core	A1-A3	7,61E+00	1,20E-05	2,29E-03	2,68E-02	4,84E-03	7,47E-08	1,78E+02
	A4	1,76E-01	6,64E-09	2,33E-04	1,25E-03	-2,01E-04	7,13E-13	2,38E+00
ε	A5	1,53E-01	3,89E-09	3,88E-05	9,94E-05	5,35E-05	7,16E-12	2,73E-01
nstream	C1	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Downs	C2	2,13E-02	8,28E-10	2,26E-05	8,92E-05	-2,92E-05	8,67E-14	2,91E-01
õ	C3	3,42E-03	5,73E-09	5,92E-06	2,37E-05	3,38E-06	5,21E-14	6,34E-02
	C4	2,38E-02	8,92E-09	2,00E-05	1,46E-04	1,37E-05	3,84E-13	3,13E-01

GWP100: Global Warming Potential; **ADPe**: Abiotic Depletion Potential (elements); **EP**: Eutrophication Potential; **AP**: Acidification Potential; **POCP**: Photochemical Ozone Creation Potential; **ODP**: Ozone Depletion Potential; **ADPf**: Abiotic Depletion Potential (fossil)

System bou	indary	Ustream + core	Downstream						
Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4	
RPEE	MJ	9,12E+00	1,21E-01	4,38E-02	0,00E+00	1,63E-02	4,58E-03	3,21E-02	
RPEM	MJ	-	-	-	-	-	-	-	
TPE	MJ	9,12E+00	1,21E-01	4,38E-02	0,00E+00	1,63E-02	4,58E-03	3,21E-02	
NRPE	MJ	1,91E+02	2,39E+00	3,41E-01	0,00E+00	2,92E-01	6,52E-02	3,27E-01	
NRPM	MJ	-	-	-	-	-	-	-	
TRPE	MJ	1,91E+02	2,39E+00	3,41E-01	0,00E+00	2,92E-01	6,52E-02	3,27E-01	
SM	kg	1,86E-02	-	-	-	-	-	-	
RSF	MJ	-	-	-	-	-	-	-	
NRSF	MJ	-	-	-	-	-	-	-	
W	m³	1,82E-02	4,18E-03	1,78E-04	0,00E+00	5,62E-04	8,60E-05	2,52E-04	

Table 22: Mapeplan T Af Broof t1 waste production & other output flows

System boundary		Ustream + core	Downstream					
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
NHW	Kg	4,19E-04	-	-	-	-	-	-
HW	Kg	1,12E-02	-	-	-	-	-	-
RW	Kg	0,00E+00	-	-	-	-	-	-
Components for re-use	Kg	-	-	-	-	-	-	-
Materials for recycling	Kg	-	-	-	-	-	1,27E00	-
Materials for energy recovery	Kg	-	-	-	-	-	-	-
Exported energy	MJ	-	-	-	-	-	-	-
HW Hazardous waste disposed; NHW Non Hazardous waste disposed; RW Radioactive waste disposed								

HW Hazardous waste disposed; NHW Non Hazardous waste disposed; RW Radioactive waste disposed

Table 23: Mapeplan T I Environmental categories

System boundary	Modules	GWP100 (Kg CO2 eq.)	ADPe (element) (Kg Sb eq.)	EP (Kg (PO ₄) ³⁻ eq.)	AP (Kg SO2 eq.)	POCP (Kg ethylene eq.)	ODP (Kg R-11 eq.)	ADPf (fossil) (MJ)
Upstream + core	A1-A3	3,82E+00	4,64E-06	1,24E-03	1,58E-02	2,68E-03	5,47E-08	9,35E+01
	A4	1,31E-01	4,93E-09	1,73E-04	9,27E-04	-1,49E-04	5,30E-13	1,77E+00
ε	A5	1,07E-01	3,00E-09	3,12E-05	7,98E-05	3,74E-05	6,98E-12	2,06E-01
istream	C1	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Downs	C2	1,38E-02	5,37E-10	1,47E-05	5,79E-05	-1,90E-05	5,63E-14	1,89E-01
ă	C3	2,22E-03	3,72E-09	3,84E-06	1,54E-05	2,19E-06	3,38E-14	4,12E-02
	C4	1,55E-02	5,79E-09	1,30E-05	9,46E-05	8,88E-06	2,49E-13	2,04E-01

GWP100: Global Warming Potential; **ADPe**: Abiotic Depletion Potential (elements); **EP**: Eutrophication Potential; **AP**: Acidification Potential; **POCP**: Photochemical Ozone Creation Potential; **ODP**: Ozone Depletion Potential; ADPf: Abiotic Depletion Potential (fossil)

System bou	Indary	Ustream + core	Downstream						
Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4	
RPEE	MJ	4,77E+00	9,02E-02	3,99E-02	0,00E+00	1,06E-02	2,97E-03	2,09E-02	
RPEM	MJ	-	-	-	-	-	-	-	
TPE	MJ	4,77E+00	9,02E-02	3,99E-02	0,00E+00	1,06E-02	2,97E-03	2,09E-02	
NRPE	MJ	1,02E+02	1,78E+00	2,71E-01	0,00E+00	1,89E-01	4,24E-02	2,12E-01	
NRPM	MJ	-	-	-	-	-	-	-	
TRPE	MJ	1,02E+02	1,78E+00	2,71E-01	0,00E+00	1,89E-01	4,24E-02	2,12E-01	
SM	kg	2,04E-02	-	-	-	-	-	-	
RSF	MJ	-	-	-	-	-	-	-	
NRSF	MJ	-	-	-	-	-	-	-	
W	m³	8,41E-03	3,10E-03	1,48E-04	0,00E+00	3,65E-04	5,58E-05	1,63E-04	

System boundary		Ustream + core	Downstream					
Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4
NHW	Kg	4,19E-04	-	-	-	-	-	-
HW	Kg	1,12E-02	-	-	-	-	-	-
RW	Kg	0,00E+00	-	-	-	-	-	-
Components for re-use	Kg	-	-	-	-	-	-	-
Materials for recycling	Kg	-	-	-	-	-	8,23E-01	-
Materials for energy recovery	Kg	-	-	-	-	-	-	-
Exported energy	MJ	-	-	-	-	-	-	-
HW Hazardous waste disposed; NHW Non Hazardous waste disposed; RW Radioactive waste disposed								

Table 25: Mapeplan T I waste production & other output flows

To calculate results for different thicknesses (12, 18, 20 and 25 mm), please use following multiplicative coefficients for the environmental indicators considered (Elx):

	12 mm	15 mm	18 mm	20 mm	25 mm
	thickness	thickness	thickness	thickness	thickness
Mapeplan T M	El _{1,5} * 0,80	El _{1,5} * 1	El _{1,5} * 1,20	El _{1,5} * 1,33	-
Mapeplan T M Broof t1	El _{1,5} * 0,80	El _{1,5} * 1	El _{1,5} * 1,20	El _{1,5} * 1,33	-
Mapeplan T B	-	El _{1,5} * 1	El _{1,5} * 1,20	El _{1,5} * 1,33	-
Mapeplan T Af	-	El _{1,5} * 1	El _{1,5} * 1,17	El _{1,5} * 1,28	-
Mapeplan T Af Broof t1	-	El _{1,5} * 1	El _{1,5} * 1,17	El _{1,5} * 1,28	-
Mapeplan T I	_	El _{1,5} * 1	El _{1,5} * 1,20	El _{1,5} * 1,33	El _{1,5} * 1,67

El_{1,5}: Environmental Indicator for Mapeplan T with 1,5 mm thickness

Tables above show absolute results for each of environmental impact categories and indicators. They enhance that module **A1** has the highest contribution for each of them and weights up to 95% of the total impact in the whole system boundary.

In particular, TPO/FPO compounds, reinforcing materials, which are some of the main components

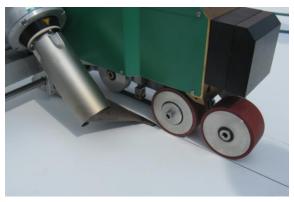
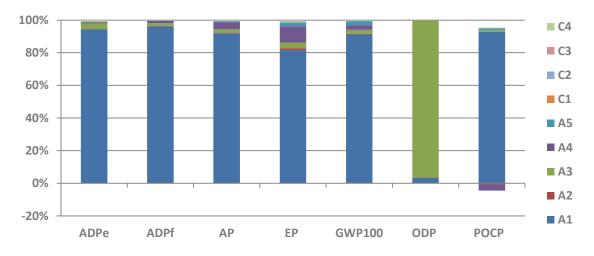
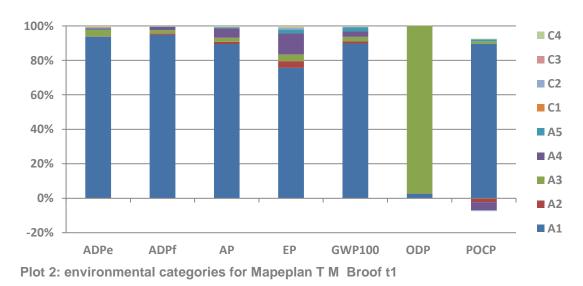


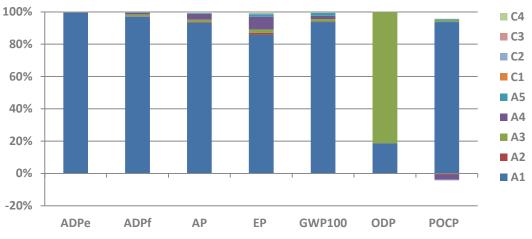
Figure 5: Installation process detail


in Mapeplan T formulations, and adhesive used for installation (where needed), carry a significant impact for all environmental categories.

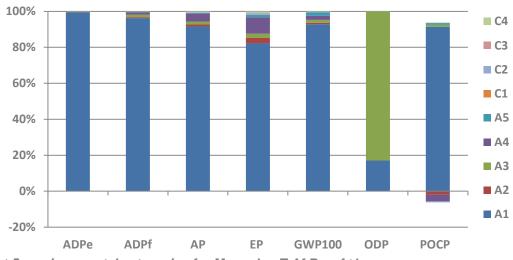

Electricity consumption and F-gas included into the refrigerating system in the production process (module **A3**), considerably affects the GWP100, ADP (fossil) and ODP values.

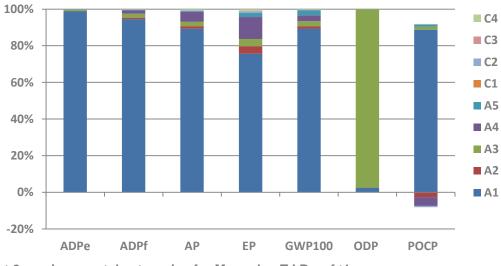
In terms of GWP100, module **A5** gives an important contribution too, considering that, during the installation phase it's necessary to take into account a membranes overlap between 5% and 6%.





Plot 1: environmental categories for Mapeplan T M


Plot 3: environmental categories for Mapeplan T B



EPD[®]

Plot 5: environmental categories for Mapeplan T Af Broof t1

Plot 6: environmental categories for Mapeplan T I Broof t1

Transportation modules (A2, A4), have both relevant importance while C2 module doesn't have a very high contribution.

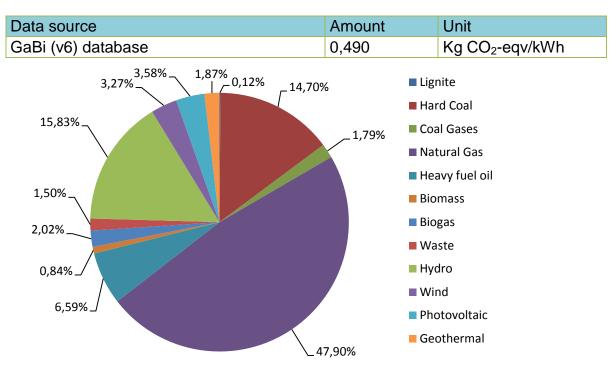

Only for transportation modules **A2** and **A4**, POCP shows a negative contribution, due to nitrogen dioxide and monoxide emission factors as reported in CML v.4.2 methodology.

Figure above shows the hot air welding of Mapeplan T by an automatic machine (rif. Leister Varimat V2).

Figure on the right shows the Mapeplan T installed on green roof with soil ballast.

Figure 6: Membrane MAPEPLAN T B on green roof

More details about electrical mix used in this EPD (Italian grid mix – 2011), is shown below:

Figure 7: Electricity Mix - Italy - 2011

This data represents the average country specific electricity supply for final consumers, including electricity own consumption, transmission/distribution losses and electricity imports from neighbouring countries. The national energy carrier mixes used for electricity production, the power plant efficiency data, shares on direct to combined heat and power generation (CHP), as well as transmission/distribution losses and own consumption are taken from official statistics (International Energy Agency) for the corresponding reference year.

8. Data Quality

Table 27: Data quality

Dataset & Geographical reference	aset & Geographical reference Database (source)		
A1			
PUR Adhesive (EU – FEICA)	EPD-FEI-20150252-IBG1-EN	2015	
TPO compounds	Ecoinvent 3.1 Database	2015	
Reinforcing materials	Ecoinvent 3.1 Database	2013	
Additives	GaBi & Ecoinvent 3.1	2015	
Electricity grid mix (IT)	GaBi Database	2011	
Thermal energy from natural gas (IT)	GaBi Database	2011	
A2-A4 (Transport)			
Truck transport (27ton payload – GLO)	GaBi Database	2012	
Ship transport (2700t DWT - GLO)	GaBi Database	2013	
Electricity mix (EU)	GaBi Database	2011	
Diesel for transport (EU)	GaBi Database	2011	
Heavy fuel oil for ship transport (EU)	GaBi Database	2011	
A3 (production)			
Wastes (EU & DE)	GaBi Database & PlasticEurope	2005-2013	
Packaging (EU)	GaBi Database & PlasticEurope	2005-2013	
Diesel mix (EU)	GaBi Database	2011	
Waste water treatment (EU)	GaBi Database	2010	
Landfill for plastic waste (EU)	GaBi Database	2013	
Landfill for inert matter (EU)	GaBi Database	2013	
A5 (Installation)			
Electricity grid mix (EU)	GaBi Database	2011	
Landfill for plastic waste (EU)	GaBi Database	2013	
Landfill for wood waste (EU)	GaBi Database	2013	
Landfill for paper waste (EU)	GaBi Database	2013	
Landfill for metal waste (EU)	GaBi Database	2013	
C1-C4 (End of Life)			
Truck transport (9,3ton payload -GLO)	GaBi Database	2013	
Electricity grid mix (IT)	GaBi Database	2011	
Landfill for inert matter (EU)	GaBi Database	2013	
Construction waste treatment (DE)	GaBi Database	2013	

Transport datasets have a global or European representativeness. . A FEICA model EPD (EPD-FEI-20150252-IBG1-EN) has been used in order to represent an auxiliary product included in this study during the installation stage. All dataset are not more than 10 years old (according to EN 15804 § 6.3.7 "data quality requirements"). Primary data are collected during 2015 and representative for the entire annual production.

9. Verification and Registration

EPD of construction products may not be comparable if they do not comply with EN 15804

"Environmental product declarations within the same product category from different programs may not be comparable

CEN standard EN15804 served as the core PCR						
PCR:	PCR 2012:01 Construction products and Construction services, Version 2.01, 2016-03-09					
PCR review was conducted by:	The Technical Committee of the International EPD® System. Chair:Massimo Marino Contact via <u>info@environdec.com</u>					
Independent verification of the declaration and data, according to ISO 14025	EPD Process Certification (Internal)EPD Verification (external)					
Third party verifier:	Certiquality S.r.l. Number of accreditation: 003H rev14					
Accredited or approved by:	Accredia					

10. References

- General Programme Instructions of the International EPD[®] System. Version 2.5.
- PCR 2012:01; "PRODUCT GROUP CLASSIFICATION: MULTIPLE UN CPC CODES CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES"; Version 2.01
- PCR 2014:12 FLEXIBLE SHEETS FOR WATERPROOFING BITUMEN , PLASTIC OR RUBBER SHEETS FOR ROOF WATERPROOFING

Contact information:

EPD owner:	Polyglass SpA www.polyglass.com
LCA author:	ADHESIVES · SEALANTS · CHEMICAL PRODUCTS FOR BUILDING Mapei SpA www.mapei.it; Environmental Sustainability Office
Programme operator:	EPD International AB info@environdec.com